Sustainable Development

Evidence of the Environmental Kuznets Curve for atmospheric pollutant emissions in Southeast Asia and implications for sustainable development: A spatial econometric approach

Journal:	Sustainable Development
Manuscript ID	SD-20-0159.R1
Wiley - Manuscript type:	Research Article
Keywords:	Air pollution, Economic growth, EKC, Southeast Asia, Spatial panels, Sustainable development

SCHOLARONE [™]
Manuscripts

 Evidence of the Environmental Kuznets Curve for atmospheric pollutant emissi Southeast Asia and implications for sustainable development: A spatial econome approach Running title: EKC for air pollution in Southeast Asia Keywords: Air pollution; economic growth; EKC; Southeast Asia; spatial panels; sus development 	ions in etric
 Southeast Asia and implications for sustainable development: A spatial econome approach approach Running title: EKC for air pollution in Southeast Asia Keywords: Air pollution; economic growth; EKC; Southeast Asia; spatial panels; sus development 	etric
 3 approach 4 5 Running title: EKC for air pollution in Southeast Asia 6 7 Keywords: Air pollution; economic growth; EKC; Southeast Asia; spatial panels; sus 8 development 	
 4 12 5 Running title: EKC for air pollution in Southeast Asia 6 17 7 Keywords: Air pollution; economic growth; EKC; Southeast Asia; spatial panels; sus 8 development 	
 Running title: EKC for air pollution in Southeast Asia Keywords: Air pollution; economic growth; EKC; Southeast Asia; spatial panels; sus development 	
 Keywords: Air pollution; economic growth; EKC; Southeast Asia; spatial panels; sus development 	
 Keywords: Air pollution; economic growth; EKC; Southeast Asia; spatial panels; sus development 	
18 19 8 20 8 21 9 22 9 31 9	stainable
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	
58 59 60	

Evidence of the Environmental Kuznets Curve for atmospheric pollutant emissions in Southeast Asia and implications for sustainable development: A spatial econometric approach

5 Abstract

Southeast Asia has one of the fastest rates of industrialisation and urbanisation in the world. While this has brought economic benefits to the region, it has also resulted in considerable environmental and health impacts associated with air pollution. This study presents the first spatial econometric assessment of the Environmental Kuznets Curve (EKC) for Southeast Asia. Spatial panels, while important in studies involving geographical units, have to date been underutilised in many EKC studies. Here, the income-pollution trajectories of three air pollutants—nitrogen oxides (NO_x), sulfur dioxide (SO₂) and fine particulate matter (PM_{2.5})— are examined through standard and spatial EKC models that regress per capita emissions on several socioeconomic indicators. The econometric assessment utilises data from 1993-2012 for nine Southeast Asian countries at varying levels of economic development. An inverted U-shaped curve is found for all pollutants, thus confirming the existence of an EKC. Spatial spillovers are not found for NO_x emissions but are supported for SO_2 and $PM_{2.5}$ emissions. While an EKC is supported, most countries are still on the upward sloping portion of the inverted U-shaped curve. This highlights the urgent need to establish and enforce effective policies to abate emissions in light of the current extent of health issues associated with ambient air pollution in the region. In particular, results presented here point to policies that increase the share of renewable energy as a potentially effective emissions abatement strategy as regional policymakers attempt to steer a path towards sustainable development.

 Keywords: Air pollution; economic growth; EKC; Southeast Asia; spatial panels; sustainable
development

1. Introduction

With an annual growth rate of 5.2% since 2000 and primary energy demand increasing by approximately 70% over the same period, Southeast Asia has one of the fastest rates of industrialisation and urbanisation in the world (International Energy Agency, 2017). While this has brought economic benefits to the region, it has also resulted in considerable health and environmental impacts associated with air pollution. The World Health Organisation attributes more than 149,000 premature deaths in the region to ambient air pollution annually and this is expected to double over the next two decades with rising energy demand and fossil fuel consumption (UN Environment, 2017). An examination of the relationship between economic growth and environmental pollution in Southeast Asia is therefore both timely and essential, especially because doing so can provide important guidance as policymakers in the region attempt to steer a path towards sustainable development.

Over the past few decades, a sizable portion of literature exploring the environment-development nexus has focused on the Environmental Kuznets Curve (EKC) hypothesis. The EKC was first proposed by Grossman and Krueger (1991), who theorised that environmental quality deteriorates in the early stages of economic growth, after which an increase in wealth prompts economic restructuring towards less pollution-intensive industries, technological improvements to methods of production, and attitudinal changes towards a cleaner environment (Maddison, 2006; Ward et al., 2016). If this were to hold, one might expect the EKC to depict an inverted U-shaped curve, whereby environmental degradation increases as

a country begins to develop until a turning point is reached, beyond which environmental quality improves with continued economic growth (Dinda, 2004; Kaika & Zervas, 2013).

Grossman and Krueger's (1991) work was underpinned by the concept of trade liberalisation. The authors identified three mechanisms through which trade can lead to the realisation of the EKC: (i) the scale effect, whereby increased market access drives the expansion of economic activity, (ii) the composition effect, whereby countries restructure their economies to specialise in sectors they enjoy comparative advantage in, and (iii) the technique effect, whereby trade facilitates changing techniques of production and promotes the sharing of greener production technologies among countries. The turning point of the EKC is theoretically attained when the effects of increased productive efficiency and changes in the composition of an economy towards more environmentally friendly sectors offset the pollutive effects of economic growth. Nevertheless, Cole (2004) asserts that in the event that economic restructuring results in the offshoring of pollution-intensive industries from high income economies to lower income economies with less stringent environmental regulations, overall net pollution levels do not decline but are instead displaced. This displacement, leading to the creation of pollution havens, has been cited as a key reason for an overly optimistic view presented by the EKC (Cole, 2004; Kearsley & Riddel, 2010).

Several studies have attempted to account for the existence of pollution havens by
incorporating a trade-reflection variable in their econometric models (e.g., Atici, 2009; Baek,
2016; Chandran & Tang, 2013; Chang, Yeh, & Chen, 2014; Ertugrul, Cetin, Seker, & Dogan,
2016; Friedl & Getzner, 2003; He, 2006; Jayanthakumaran, Verma, & Liu, 2012; Lau,
Choong, & Eng, 2014; Sun, Clottey, Geng, Fang, & Amissah, 2019; Wagner & Timmins,
2009). The findings have, however, been mixed at best, with some studies suggesting the

Page 5 of 49

Sustainable Development

existence of pollution havens and others not. These studies also yield inconclusive results regarding the final shape of the EKC (e.g., positive linear relationship; inverted U-shaped relationship; U-shaped relationship; N-shaped relationship; no relationship). A recent strand of literature attributes these inconsistencies to the failure to account for spatial relationships among countries despite empirical evidence suggesting geographical distance as a key determinant of trade (Anderson & van Wincoop, 2004) and technological diffusion (Keller, 2004). Omitting spatial controls from econometric models when spatial relationships exist would consequently result in biased estimates (Anselin, 1988; LeSage & Pace, 2009). Aware of the potential dependence among countries with open economies, Maddison (2006) and Rupasingha, Goetz, Debertin, and Pagoulatos (2004) were amongst the first to incorporate spatial interactions in their EKC frameworks. The authors, along with several others who have since extended the standard EKC to include spatially weighted variables, arrived at a common conclusion that emissions in one country may indeed be strongly influenced by the economic standing of a neighbouring state (e.g., Balado-Naves, Baños-Pino, & Mayor, 2018; Kang, Zhao, & Yang, 2016; Wang, Kang, Wu, & Xiao, 2013). At present, spatial EKC studies are either highly generalised and pitched at a global scale (e.g., Balado-Naves et al., 2018; Maddison, 2006; Wang et al., 2013), centred on large nation states such as China (e.g., Ding, Zhang, Chen, Wang, & Nie, 2019; Ge, Zhou, Zhou, Ye, & Liu, 2018; Hao, Liu, Weng, & Gao, 2016; Hao, Wu, Wang, & Huang, 2018; Li et al., 2014; Meng & Huang, 2018; Xu et al., 2019; Zhang, Zhang, & Zhao, 2020; Zhu, Wang, & Zhang, 2019) and the United States (e.g., Burnett, Bergstrom, & Dorfman, 2013; Rupasingha et al., 2004; Tevie, Grimsrud, & Berrens, 2011), or considered for regional groupings of countries that are at relatively similar stages of economic development such as Europe (e.g., Maddison, 2007). This study contributes to the current literature by providing the first spatial assessment of the

100 EKC for Southeast Asia, an economically diverse region characterised by rapid urbanisation101 and industrialisation and widespread environmental degradation.

The research that underpins this paper focuses on the emissions of three criteria air pollutants—nitrogen oxides (NO_x), sulfur dioxide (SO₂) and fine particulate matter ($PM_{2.5}$). These three pollutants are closely associated with increases in fossil fuel combustion, power generation, as well as inland and maritime transportation in Southeast Asia, and have been implicated as the leading cause of respiratory-related diseases in the region (Koplitz, Jacob, Sulprizio, Myllyvirta, & Reid, 2017; Lee, Iraqui, & Wang, 2019; Shi et al., 2018). A recent global air quality report revealed that annual mean levels of PM_{2.5}—an indicator of overall air quality for Target 11.6 of the United Nations Sustainable Development Goals (SDGs)-across all Southeast Asian countries considerably exceeded limits set by the World Health Organisation (IQAir, 2019). Notwithstanding the well-documented environmental and health impacts of NO_x, SO₂ and PM_{2.5} (United States Environmental Protection Agency, 2016; World Health Organisation, 2018), EKC-oriented studies in Southeast Asia have, to date, relied on carbon dioxide (CO₂) emissions as a proxy of environmental degradation (Table 1). While this is due to the limited availability of continuous, long-term data for other pollutant types, the general consensus is that the inverted U-shaped relationship does not hold for CO₂ emissions in any meaningful way (Ansuategi & Escapa, 2002; Arrow et al., 1995; Holtz-Eakin & Selden, 1995; Kaika & Zervas, 2013; Zhou, Ye, & Ge, 2017). This is because CO₂, once emitted, is widely dispersed in the atmosphere and the costs of pollution are easily externalised (Cole, Rayner, & Bates, 1997; Dinda, 2004). Consequently, CO₂ emissions tend to generate a relatively weak effect on local perceptions of environmental quality (Chen & Taylor, 2020) and on the responsiveness of policymakers and regulators (Cole, 1999; Gill, Viswanathan, & Hassan, 2018). Any observed declines in carbon emissions for each unit of

Sustainable Development

3
л Л
4
2
6
7
8
9
10
11
12
13
14
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
32
22
22 24
34
35
36
37
38
39
40
41
42
⊿2 ⊿2
رب ۸۸
44 45
45
46
47
48
49
50
51
52
52
52
54 57
55
56
57
58
59
60

capital stock—resulting from the shift towards cleaner fuels and technologies—have hence 125 been largely motivated by concerns about the effects of local rather than global pollutants 126 127 (Shafik, 1994). To this end, most studies either find a monotonically increasing relationship between CO₂ emissions and income, or report a high, out-of-sample turning point. 128 129 The current paper estimates two forms of the EKC: (i) a standard EKC that regresses 130 131 per capita emissions on a range of variables reflecting the mechanisms originally proposed by Grossman and Krueger (1991), and (ii) a spatial EKC that augments the standard model by 132 133 including spatially weighted variables. This permits assessment, for the first time, of whether the evidence for NO_x, SO₂ and PM_{2.5} emissions in Southeast Asia is consistent with the EKC 134 hypothesis, and the extent to which emissions in one country are associated with 135 socioeconomic conditions in other countries within the region. We take advantage of and 136 combine two 20-year country-level panels for the region, one on pollutant emissions and the 137 other on aggregate economic metrics. 138 139 2. Data 140 A balanced panel dataset comprising nine countries in Southeast Asia¹ was used to assess the 141 relationship between economic growth and environmental pollution. Panel data are generally 142 preferred over time-series and cross-sectional data as they contain greater degrees of freedom 143 and sampling variability, leading to improved accuracy and validity of parameter estimates 144 (Hsiao, 2007). The nine countries referred to comprise a highly heterogeneous grouping in 145 terms of economic standing, with Brunei and Singapore classed as high income economies, 146

¹ Southeast Asia comprises Brunei, Cambodia, Indonesia, Lao PDR, Malaysia, Myanmar, Philippines, Singapore, Thailand, Timor-Leste and Vietnam. Myanmar was excluded from the analysis due to a large amount of missing data for several explanatory variables, while Timor-Leste was excluded as the country was only formed in 2002, midway through our study period. Pollutant emissions from Timor-Leste are expected to be very low, however, owing to its relatively small size and population and low level of economic development.

Malaysia and Thailand classed as upper-middle income economies, and Vietnam, Cambodia, Lao PDR, Philippines and Indonesia classed as lower-middle income economies (World Bank, 2019). No other region in the world supports such a wide diversity of per capita gross domestic product (GDP) among countries that are economically linked—in this case through various Association of Southeast Asian Nations (ASEAN) agreements-within such a small geographical area (Figure 1). This diversity permits the projection, albeit cautious, of the joint evolution of environmental quality and economic development for countries that are currently at relatively early stages of development (Stern, 2004). The econometric analysis detailed here utilises 20 years of data from 1993 to 2012. Data on NO_x, SO₂ and PM_{2.5} emissions were taken from the Emissions Database for Global Atmospheric Research (EDGAR v4.3.2; Crippa et al., 2018), while economic data were taken from the World Bank's World Development Indicators (data.worldbank.org/indicator) and the United Nations Conference on Trade and Development (unctadstat.unctad.org). The EDGAR database adopts a bottom-up, sector-specific² calculation methodology, but does not include emissions arising from large-scale biomass burning, land-use change and forestry (Crippa et al., 2018; Janssens-Maenhout et al., 2019), which can be substantial in countries like Indonesia and Malaysia (Streets, Yarber, Woo, & Carmichael, 2003; Vadrevu, Ohara, & Justice, 2014). To describe an EKC relationship, the main regressor of interest is per capita GDP and its squared term, measured in constant 2011 international dollars using purchasing power parity³. Scatterplots depicting both cross-country heterogeneity and time-series

² Main categories of emission sectors comprise energy (including the production, combustion, handling and transmission of fossil fuels and biofuels), industrial processes (including non-combustion emissions from the manufacturing of chemicals and solvents or production of food, paper and ferrous and non-ferrous metals), agriculture (including agricultural waste burning), waste (including landfills, wastewater management and solid waste incineration) and others (including direct emissions from fossil fuel fires and indirect emissions from atmospheric deposition of NO_x). More details can be found in Crippa et al. (2018) and Janssens-Maenhout et al. (2019).

³ All dollar values hereafter are expressed in constant 2011 international dollars using purchasing power parity.

57 58

59

60

Sustainable Development

2			
3 4	168	variation in the key variables of interest (i.e., per capita GDP and per capita emissions) a	
5 6	169	presented	d in Figure 2. Additional control variables used in our analysis include:
/ 8 9	170		
) 10 11	171	(i)	Level of urbanisation, calculated as the percentage of population living in urban
12 13	172		areas out of the total population. As urbanisation levels increase, per capita
14 15 16	173		emissions are expected to rise due to increased consumption and energy use (Dong,
16 17 18	174		Lin, Huang, & Chen, 2020; M. Yang, Ma, & Sun, 2018). Urbanisation levels vary
19 20	175		considerably among the nine Southeast Asian countries, from Cambodia, where a
21 22	176		little over 20% of the population resides in urban areas, to Singapore with its entirely
23 24 25	177		urbanised population.
23 26 27	178		
28 29	179	(ii)	Share of renewable energy consumption, calculated as a percentage of total final
30 31 32	180		energy consumption. Energy generated from renewable sources is commonly
33 34	181		associated with lower emission levels (Xie, Dai, & Dong, 2018). As the extent of
35 36	182		renewable energy development is largely determined by a country's natural resource
37 38 20	183		endowment (Carley, 2009), economies like land- and resource-challenged
39 40 41	184		Singapore, and Brunei, with its substantial oil and liquefied natural gas reserves,
42 43	185		meet less than 1% of their energy consumption through renewables. By comparison,
44 45	186		countries like Cambodia and Lao PDR have been able to harness the Mekong River
46 47 48	187		as a source of hydropower and thus generate a high proportion of their energy from
49 50	188		renewable sources.
51 52	189		
53 54 55 56	190	(iii)	Share of the services sector (ISIC divisions 50–99) ⁴ , expressed as a percentage of

⁴ ISIC divisions 50–99 include services in wholesale and retail trade (including hotels and restaurants), transport, and government, financial, professional and personal services such as education, healthcare and real estate services.

Page 10 of 49

1 2		
2 3 4	191	total GDP. An economy with a dominant services sector generally indicates a de-
5 6 7	192	industrialisation stage characterised by the phasing out of more pollution-intensive
7 8 9	193	industries (N. Yang et al., 2018). Singapore is the only country in our sample where
10 11	194	the services sector accounts for more than 60% of GDP.
12 13 14	195	
14 15 16	196	(iv) Primary energy intensity, measured by dividing total primary energy supply over
17 18	197	GDP. Economies with lower energy intensity use a smaller amount of energy for
19 20 21	198	every unit of output produced. Energy intensity is therefore often used as an indirect
21 22 23	199	measure of technological progress as productive processes become cleaner and more
24 25	200	efficient (Huang, Du, & Tao, 2017; Pan, Uddin, Han, & Pan, 2019).
26 27 28	201	
28 29 30	202	(v) Foreign direct investment (FDI), expressed as an inward stock and as a percentage of
31 32	203	GDP. The association between FDI and pollutant emissions depends on the nature of
33 34	204	investment by multinational firms. For example, while FDI may assist in the transfer
35 36 37	205	of technology and development of human capital when an economy shifts towards
38 39	206	high value-added products and service industries, other economies that specialise in
40 41	207	pollution-intensive industries may also attract FDI (Gardiner & Hajek, 2019;
42 43 44	208	López-Menéndez, Pérez, & Moreno, 2014).
45 46	209	
47 48	210	Table 2 provides additional details and summary statistics of the data.
49 50	211	
52 53	212	3. Methodology
54 55 56 57	213	3.1. Standard EKC model specification
	214	In its most basic form, the EKC hypothesises a quadratic relationship between economic
58 59 60	215	growth and environmental pollution, with per capita income and its squared term serving as

Page 11 of 49

the only explanatory variables in a regression equation (Grossman & Krueger, 1995). This relationship is not to be interpreted as causal in the sense that changes in income would lead to a change in emission levels. Rather, a multitude of mechanisms are at play, whereby various economic actors respond endogenously to evolving incentives and institutions that shape both growth and emission levels. A key criticism of the basic model has been its lack of explanatory capacity and, in particular, the omission of key variables that are strongly associated with pollution dynamics. For example, critics assert that income alone does not reflect broader changes in the structural composition of an economy, nor does it fully capture the effects of technological progress (Dinda, 2004; Fonkych & Lempert, 2005; Stern, 2004). We have therefore selected variables that are not only important determinants of NO_x , SO_2 and PM_{2.5} emissions, but that are also representative of the relationship between economic development and environmental pollution: $lne_{it} = \beta_1 lny_{it} + \beta_2 (lny_{it})^2 + \beta_3 UB_{it} + \beta_4 RE_{it} + \beta_5 SV_{it} + \beta_6 lnEI_{it} + \beta_7 FDI_{it} + \alpha_i + \eta_t + \varepsilon_{it}$ (1) where e_{it} = per capita emissions of NO_x, SO₂ and PM_{2.5} for country *i* in year *t*, y_{it} = per capita GDP, UB_{it} = level of urbanisation, RE_{it} = share of renewable energy consumption, SV_{it} = share of the services sector, EI_{it} = energy intensity, and FDI_{it} = stock of inward FDI. Variables e, y, and EI enter in natural logarithms. α_i and η_t represent country and year fixed

effects, respectively, while ε_{it} denotes the error term. If an EKC exists, the turning point⁵

237 would be given by:

⁵ Estimated standard errors on the ratio of coefficients and thus 95% confidence intervals (CI) on the turning point are computed using the delta method.

 $-\beta_1/2\beta_2$)

appropriate spatial regression specification to

239
$$y^* = exp(-\beta_1/2\beta_2)$$
 (2)
240
241 3.2. Spatial EKC model specification
242 Spatial spillovers occur when changes in one or more explanatory variables in unit *i* impact
243 the dependent variable in other units *j*, where $j \neq i$ (Halleck Vega & Elhorst, 2015). Given
244 that all countries in our sample are part of ASEAN, which promotes and facilitates regional
245 trade and economic integration (ASEAN Secretariat, 2015), there is likely to be some degree
246 of spatial spillover arising among these member states. When such spillovers exist, LeSage
247 (2014) stresses the importance of selecting an appropriate spatial regression specification to
248 account for these relationships. In the current study, spatial relationships are accounted for by
249 estimating three spatial regression models. The spatial Durbin error model (SDEM) allows
250 for spatial lags of the explanatory variables and the error term. Its two nested forms, the
251 spatial lag of X (SLX) model and the spatial error model (SEM), include, respectively,
252 spatially lagged explanatory variables and a spatial autoregressive process in the error term
253 (Halleck Vega & Elhorst, 2015; LeSage & Pace, 2009). Here, the SDEM model takes the
254 following form:
255
256 $lne_{in} = \beta_1 lny_{it} + \beta_2 (lny_{it})^2 + \beta_3 UB_{it} + \beta_4 RE_{it} + \beta_5 SV_{it} + \beta_4 lnE_{it} + \beta_5 PD_{it} + \theta_1$
257 $\sum_{j=1}^{N} w_{ij} lnE_{Ij} + \theta_2 \sum_{j=1}^{N} w_{ij} FD_{Ij} + \alpha_i + \eta_i + u_{it}$ (3)
259
260 $u_{it} = \lambda \sum_{j=1}^{N} w_{ij} u_{jt} + \varepsilon_{it}$
261
262 where $N = 9$ is the number of panel units or countries, θ_p represents the spillover effects for
263 the p^{th} spatially weighted explanatory variable, u_{it} denotes the spatially dependent error term,
264 the p^{th} spatially weighted explanatory variable, u_{it} denotes the spatially dependent error term,
265 the p^{th} spatially weighted explanatory variable, u_{it} denotes the spatially dependent error term,
266 the p^{th} spatially weighted explanatory varia

1 2

(3)

Page 13 of 49

Sustainable Development

and λ indicates the strength of spatial dependence among the errors. w_{ii} is the element at row *i* and column *j* of a pre-determined spatial weights matrix, *W*, which captures the strength of relationship among the nine countries. W is specified from Tobler's First Law of Geography, which states that everything is related to everything else, but things that are nearer are more related to one another than things that are farther apart (Tobler, 1970). Since geographical distance is an important determinant of trade, W was computed using inverse distances based on country capitals⁶. The use of country capitals is preferred for the region of Southeast Asia due to the predominance of island states and irregularly-shaped countries (Figure 1). Using country centroids would result in the centroids of several countries lying in the middle of the sea (e.g., Indonesia) or in another country's territory (e.g., Vietnam). Prior to its inclusion in the spatial EKC models, W was normalised by its maximum eigenvalue to remove unit dependence whilst preserving its internal weighting structure (Kelejian & Prucha, 2010).

277 3.3. Estimation methods, model tests and sensitivity analysis

The fixed effects (FE) estimator was used in our model estimations to account for individual heterogeneity. Individual FE capture any time-invariant, country-specific characteristics, such as climate and geography (Ge et al., 2018), while year FE control for common time-varying external shocks that may affect the variables in our model, such as the financial crisis or the implementation of or changes in regional policy (Kang et al., 2016). For the standard EKCs, four models were compared using ordinary least squares (OLS): (i) pooled OLS, (ii) individual FE, (iii) year FE, and (iv) two-way FE. A Hausman diagnostic test was included in our preliminary analysis to validate our choice of the FE estimator over the random effects (RE) estimator (Wooldridge, 2013). For the spatial EKCs, while the SLX model can be efficiently estimated using OLS regression, maximum likelihood (ML) techniques are used to

⁶ The diagonal of W contains zeros.

Sustainable Development

2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
∠∠ วว	
25	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
27	
54 25	
35	
36	
37	
38	
39	
40	
41	
42	
<u>4</u> 2	
44	
45 47	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

288	estimate the SEM and SDEM models (LeSage & Pace, 2009). We therefore proceeded by
289	first estimating all three spatial models before employing likelihood ratio (LR) tests to
290	determine if the SDEM model can be simplified to one of its nested forms. Accordingly, the
291	LR SLX test poses a null hypothesis of H_0 : $\lambda = 0$, while the LR SEM test poses a null
292	hypothesis of $H_0: \theta_p = 0$, where $p = 1,, 6$.
293	
294	To test the sensitivity of the estimated coefficients, we modified our regressions by
295	dropping two covariates (share of the services sector and FDI) and interacting level of
296	urbanisation with GDP and its squared term. This permits assessment of the robustness of an
297	estimated EKC relationship to variations in model specification, and the dependence of the
298	estimated turning points on the level of urbanisation specified; turning points were estimated
299	using the 25 th and 75 th percentile of urbanisation levels across all countries (27% and 68%,
300	respectively). No interactions were included in the spatially weighted variables to maintain
301	model parsimony.
302	
303	All model estimations and tests, including computation of W , were performed in the
304	R language and environment (v3.5.0; R Core Team, 2018).
305	
306	4. Results and discussion
307	4.1. Preliminary analysis
308	Supplementary Tables 1–3 present the results of the specification test for the standard EKC
309	for per capita NO_x , SO_2 and $PM_{2.5}$ emissions, respectively. For all three air pollutants, the
310	Hausman test rejects ($p < 0.01$) the null hypothesis that the RE estimator is more appropriate.
311	The two-way FE model naturally provides the best fit of the data for each pollutant, as
312	measured by a substantially higher log-likelihood compared to models with one-way FE. This

Sustainable Development

is intuitive in light of Figure 1, which shows marked heterogeneity across countries coupled
with within-country variation over time. We therefore focus our analysis on the two-way FE
model estimations.

317 4.2. NO_x emissions

Table 3 presents the standard and spatial two-way FE estimations for NO_x emissions. For the standard model, the positive coefficient of lny and negative coefficient of $(lny)^2$, both of which are significant at the 1% level, point to an inverted U-shaped relationship between per capita income and NO_x pollution. This relationship is consistent with the findings of other studies (e.g., Cole et al., 1997; Panayotou, 1993; Selden & Song, 1994) and implies that increases in per capita GDP are associated with increases with per capita NO_x emissions until a turning point of \$10,957 (95% CI = [\$4819, \$24,914]) is reached. This turning point is well within the observed income range in our sample, with the four most economically developed countries currently on the downward sloping portion of the EKC (Figure 3). Nevertheless, given that the remaining lower income economies are still relatively far from attaining this level of per capita GDP, NO_x emissions are expected to continue rising throughout much of the region in the years to come if current policies and business conditions are maintained.

The remaining explanatory variables exhibit statistical significance at the 1% level except for FDI, which is not significant even at the 10% level⁷. The standard model suggests that a percentage point increase in urbanisation levels is, on average, associated with a 2.8% increase in per capita NO_x emissions. This correlation is considerable and consistent with our

<sup>49
50
51
52
53
54
55
56
57
58
59
60</sup>

⁷ This lack of significance is likely due to the fact that, in this sample, FDI is already explained by countries' other economic characteristics that are included in the model.

expectations, as urbanisation tends to increase with primary energy demand, including that of transportation (e.g., diesel), which is a significant source of NO_x emissions (Ge et al., 2018). Energy intensity also has an expected positive association with the amount of per capita NO_x emissions produced; specifically, all else being equal, a 1% increase in energy intensity is associated with a 0.16% increase in per capita NO_x emissions. By contrast, a rising share of renewable energy is associated with lower emissions, with every percentage point shift in energy consumption towards renewable sources leading to a decline in emissions of equal magnitude. Emissions are also expected to decline by an average of 1.1% with every percentage point increase in the share of the services sector. This is due to the generally less polluting nature of the services sector relative to manufacturing and heavy industries (Levinson, 2009). Beyond offering an EKC assessment for Southeast Asia, the analysis informs the characteristics that drive emissions in different countries in the region.

For the spatial model, the null hypothesis for both the LR SLX and LR SEM tests is not rejected, even at the 10% level. This suggests that there is insufficient evidence to confirm the existence of spatial spillover effects of the errors and regressors for per capita NO_x emissions. After controlling for possible spatial relationships among countries, the estimated coefficients for all three spatial models are broadly similar to that of the standard FE model, suggesting that the level and composition of economic activity in neighbouring countries do not lend additional power to explain national NO_x emissions. A possible reason for this is that the largest contributors of NO_x emissions in Southeast Asia are the ever-growing public electricity production and transportation sectors (Vadrevu et al., 2014). These two sources, which are highly and positively associated with urbanisation levels, tend to be more local in nature as they reflect rising standards of living (Chang et al., 2018; Herrerias, Aller, & Ordóñez, 2017; Wang & Yang, 2019). As people migrate from rural to urban areas,

Page 17 of 49

Sustainable Development

they tend to demand greater mobility and better access to electricity. The resultant increase in per capita NO_x emissions therefore appears to be predominantly driven by increases in national energy and fuel consumption rather than changes in the energy intensity or sectoral composition of neighbouring countries, which would then be suggestive of pollution havens in NO_x sources.

Supplementary Table 4 investigates the sensitivity of estimated turning points to different urbanization levels. The standard and spatial EKC specifications for NO_x emissions are repeated, this time adding the interaction of urbanisation with GDP and the interaction of urbanisation with GDP squared while dropping the share of the services sector and FDI together with their spatial lags. The results indicate turning points of about \$5,000 to \$8,000 at lower levels of urbanization in the sample (25^{th} percentile). At higher levels of urbanization (75^{th} percentile), turning points are evaluated to be lower, between \$2,000 and \$4,000.

Although NO_x emissions in Southeast Asia are projected to rise for the foreseeable future, our results point to the potential effectiveness of policies targeted at minimising vehicular emissions. At present, Singapore, Thailand and Malaysia are the only countries in the region to impose a minimum of Euro IV-equivalent emission standards for light-duty passenger vehicles (ASEAN Secretariat, 2019; UN Environment, 2017). These countries are also found on the downward sloping portion of the estimated EKC. Given the positive association between urbanisation and vehicular ownership, and with our model indicating urbanisation levels having the largest influence on per capita NO_x emissions, measures to tighten vehicle emission standards and improve fuel quality—particularly in countries that are currently in the early stages of rapid urbanisation-will likely lower the current turning point of the EKC. This will help to reduce projected increases in transport-related NO_x

2 3	
4	
5	
6	
7	
, 8	
a	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

emissions, with the International Energy Agency (2017) expecting road transportation to
account for 50% of all NO_x emissions in Southeast Asia by 2040 under a business-as-usual
scenario. It will also contribute to regional efforts to achieve SDGs 3 (by reducing harmful
vehicular emissions), 7 (by promoting energy efficient transport), 11 (by improving urban air
quality and fostering sustainable mobility in cities) and 13 (by reducing greenhouse gas
emissions).

393 4.3. SO₂ emissions

Table 4 presents the standard and spatial two-way FE estimations for SO_2 emissions. For the standard model, all variables were significant at the 1% level except for energy intensity and FDI stock, which was not significant, even at the 10% level. This model lends support to the inverted U-shaped EKC and estimates a relatively low turning point of \$4054 (95% CI = [\$1863, \$8821]).

399

392

For the spatial model, the null hypothesis for the LR SEM test was rejected at the 1% 400 level, while that for the LR SLX test was not rejected. These tests point to the significance of 401 spatial spillovers in the form of spatially lagged observable economic aggregates. Notably, 402 the significant negative coefficient of WlnGDP and positive coefficient of $W(lnGDP)^2$ imply 403 that, all else including national income being equal, economic growth in neighbouring 404 countries is associated with a decline in national per capita SO₂ emissions until neighbouring 405 countries attain a per capita GDP of \$20,9698. Thereafter, national per capita SO₂ emissions 406 407 are expected to increase. One interpretation used in the literature suggests the existence of

⁸ This turning point is calculated using WlnGDP and W(lny)² in Table 4: exp $\left(\frac{-1 \times -9.268}{2 \times 0.466}\right)$

Page 19 of 49

Sustainable Development

pollution havens in Southeast Asia: as neighbouring lower income economies develop,
national emissions decline—likely due to the outsourcing of pollution-intensive industries
from higher to lower income economies—until a certain level of wealth is achieved (Ding et
al., 2019). This pollution displacement is temporary, however, with national per capita SO₂
emissions rising again once lower income economies improve their economic standing.

In addition, our results indicate that when spatial spillovers are accounted for, the estimated turning point drops from \$4054 (95% CI = [\$1863, \$8821]) in the standard model to 2616 (95% CI = [1521, 4499]) in the SLX model. This would suggest that all countries considered here, with the exception of Cambodia, are on the downward sloping portion of the EKC, and suggests that SO₂ emissions for the region as a whole may be on a decline. Such a trend is contrary to recent reports and observations, which indicate that SO₂ emissions in the region have been increasing and are expected to grow by 40% over current levels to 5.1 Tg in 2040 (International Energy Agency, 2017). Given that increased SO₂ emissions are primarily driven by a rising use of coal for power generation, and with coal projected to account for almost half of the total electricity generated in the region in 2035 (World Coal Association and ASEAN Centre for Energy, 2017), this discrepancy may be largely attributed to the inability of our models in capturing an out-of-sample increase in coal-fired electricity generation in Southeast Asia. This is particularly the case for Indonesia, Vietnam and the Philippines, where the number of coal-fired power plants is expected to grow from 147 to 323, 38 to 133 and 30 to 70, respectively, between 2011 and 2030 (Koplitz et al., 2017). Also relevant is the fact that the only two high income economies in Southeast Asia, Singapore and Brunei, do not rely on coal as a primary source of fuel. Hence, our models may have failed to account for a possible rise in per capita SO₂ emissions associated with an increasing reliance on coal-use as lower income economies grow. While this is

indicative of model sensitivity to the data used, the results are fairly robust to econometric specification (Supplementary Table 5), particularly at lower levels of urbanisation.

4.4. $PM_{2.5}$ emissions

Table 5 presents the standard and spatial two-way FE estimations for PM_{2.5} emissions. For the LR SEM test, the null hypothesis was rejected at the 1% level. We do not reject the null hypothesis for the LR SLX test, even at the 10% level. Thus, similar to the case for SO₂ emissions, the SLX model was found to best fit the data.

As with the earlier findings of NO_x and SO₂, the estimated turning point for PM_{2.5} emissions is lower when spatial lags are accounted for. In particular, the results of the SLX model indicate the existence of an inverted U-shaped EKC with an estimated turning point of 10,381 (95% CI = [\$4842, \$22,259]). This turning point likely reflects the switch from the traditional use of solid biomass to electricity and natural gas for cooking and heating, as indoor air pollution remains a major health risk, particularly in rural parts of Southeast Asia. In lower income economies such as Lao PDR, Cambodia and the Philippines, for example, 96%, 83% and 60% of the population, respectively, relies primarily on biomass as a fuel source (International Energy Agency, 2017). These countries are also found on the upward sloping portion of the EKC. The estimates, however, appear to be highly sensitive to model specification. Modifying the original model by allowing the income-pollution relationship to vary with urbanisation levels no longer results in an inverted U-shaped EKC (Supplementary Table 6). Evidence of an EKC for per capita PM_{2.5} emissions is therefore much less robust than for NO_x and SO_2 emissions.

5. Conclusions and policy implications

Page 21 of 49

Sustainable Development

This study provides the first confirmation of the EKC for NO_x, SO₂ and PM_{2.5} emissions in Southeast Asia using a spatial econometric approach. While an EKC is found for all three air pollutants, most countries are still on the upward sloping portion of the inverted U-shaped curve. This finding highlights the urgent need to establish and enforce effective policies to abate emissions in light of the current extent of health issues associated with air pollution in Southeast Asia. In particular, results presented here point to policies that increase the share of renewables in the total energy mix as a potentially effective emissions abatement strategy. Rather than focusing on restructuring the composition of an economy-which has its limits as today's developing economies will find it more difficult to phase out or offshore pollutionintensive industries (Arrow et al., 1995; Stern, 2004)-Southeast Asian countries should work towards the development of renewable energy. The latter, however, requires careful thought and planning to avoid the potential pitfalls associated with it. For example, the expansion of oil palm plantations for the production of biofuels in Malaysia and Indonesia has, to date, taken place without due consideration of its negative impact on the environment (Mukherjee & Sovacool, 2014). This includes the large amount of carbon emissions and particulate pollution produced from the burning and conversion of forests and peatlands (Hayasaka, Noguchi, Putra, Yulianti, & Vadrevu, 2014; Nechita-Banda et al., 2018). The rapid development of hydroelectric dams throughout the region, which is, in part, driven by incentives to reduce energy dependence on fossil fuels, has also resulted in negative environmental impacts, such as declines in fish stocks and alterations to sediment and nutrient transport, as well in the loss of livelihoods and increased food insecurity (Hecht, Lacombe, Arias, Dang, & Piman, 2019). Tapping into renewable energy therefore requires a thorough evaluation of the trade-offs between the benefits of renewable energy and their potential, inadvertent ecological, social and environmental consequences. This remains a key regional challenge, especially in light of existing plans to expand the production and

1 ว		
2 3 4	483	consumption of coal to meet future energy demands.
5 6 7	484	
7 8 9	485	References
10 11	486	Al-Mulali, U., Saboori, B., Ozturk, I. (2015). Investigating the environmental Kuznets curve
12 13	487	hypothesis in Vietnam. Energy Policy, 76, 123–131.
14 15	488	https://doi.org/10.1016/j.enpol.2014.11.019
16 17 18	489	Anderson, J. E., van Wincoop, E. (2004). Trade costs. Journal of Economic Literature, 42,
19 20	490	691-751. https://doi.org/10.1257/0022051042177649
21 22	491	Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht: Springer Science.
23 24	492	Ansuategi, A., & Escapa, M. (2002). Economic growth and greenhouse gas emissions.
25 26 27	493	Ecological Economics, 40, 23-37. https://doi.org/10.1016/S0921-8009(01)00272-5
28 29	494	Apergis, N., & Ozturk, I. (2015). Testing environmental Kuznets curve hypothesis in Asian
30 31	495	countries. Ecological Indicators, 52, 16-22. https://doi.org/10.1016/j.ecolind.2014.11.026
32 33	496	Arrow, K., Bolin, B., Costanza, R., Dasgupta, P., Folke, C., Holling, C. S., Pimentel, D.
34 35 36	497	(1995). Economic growth, carrying capacity, and the environment. Science, 268, 520-
37 38	498	521. https://doi.org/10.1017/S1355770X00000413
39 40	499	ASEAN Secretariat (2015). ASEAN Economic Community Blueprint 2025. Retrieved
41 42 42	500	September 17, 2019, from: https://www.asean.org/storage/2016/03/AECBP_2025r_
43 44 45	501	FINAL.pdf
46 47	502	ASEAN Secretariat (2019). ASEAN Fuel Economy Roadmap for the Transport Sector 2018-
48 49	503	2025: with Focus on Light-Duty Vehicles. Retrieved September 17, 2019, from:
50 51 52	504	https://asean.org/storage/ 2019/03/ASEAN-Fuel-Economy-Roadmap-FINAL.pdf
53 54	505	Atici, C. (2009). Carbon emissions in Central and Eastern Europe: Environmental Kuznets
55 56	506	curve and implications for sustainable development. Sustainable Development, 17, 155-
57 58	507	160. https://doi.org/10.1002/sd.372
59 60	508	Azlina, A. A., Law, S. H., & Nik Mustapha, N. H. (2014). Dynamic linkages among transport

Page 23 of 49

2		
3 4	509	energy consumption, income and CO ₂ emission in Malaysia. Energy Policy, 73, 598–606.
5 6	510	https://doi.org/10.1016/j.enpol.2014.05.046
7 8	511	Baek, J. (2016). A new look at the FDI-income-energy-environment nexus: Dynamic panel
9 10 11	512	data analysis of ASEAN. Energy Policy, 91, 22-27.
11 12 13	513	https://doi.org/10.1016/j.enpol.2015.12.045
14 15	514	Balado-Naves, R., Baños-Pino, J. F., & Mayor, M. (2018). Do countries influence
16 17	515	neighbouring pollution? A spatial analysis of the EKC for CO ₂ emissions. Energy
18 19	516	Policy, 123, 266–279. https://doi.org/10.1016/j.enpol.2018.08.059
20 21 22	517	Burnett, J. W., Bergstrom, J. C., & Dorfman, J. H. (2013). A spatial panel data approach to
23 24	518	estimating U.S. state-level energy emissions. Energy Economics, 40, 396–404.
25 26	519	https://doi.org/10.1016/j.eneco.2013.07.021
27 28 29	520	Carley, S. (2009). State renewable energy electricity policies: An empirical evaluation of
30 31	521	effectiveness. Energy Policy, 37, 3071–3081.
32 33	522	https://doi.org/10.1016/j.enpol.2009.03.062
34 35	523	Chandran, V. G. R., & Tang, C. F. (2013). The impacts of transport energy consumption,
30 37 38	524	foreign direct investment and income on CO ₂ emissions in ASEAN-5 economies.
39 40	525	Renewable and Sustainable Energy Reviews, 24, 445–453.
41 42	526	https://doi.org/10.1016/j.rser.2013.03.054
43 44 45	527	Chang, DS., Yeh, LT., & Chen, Y. (2014). The effects of economic development,
46 47	528	international trade, industrial structure and energy demands on sustainable development.
48 49	529	Sustainable Development, 22, 377–390. https://doi.org/10.1002/sd.1555
50 51	530	Chang, H., Liu, Y., Wang, Y., Zhang, L., Song, Z., & Hsueh, I. (2018). Nitrogen emissions-
52 53 54	531	based assessment of anthropogenic regional ecological risk: An example of Taiwanese
55 56	532	urbanization, 1990–2015. Enviromental Management, 62, 968–986.
57 58	533	https://doi.org/10.1007/s00267-018-1089-3
59 60		

2		
3 4	534	Chen, Q., & Taylor, D. (2020). Economic development and pollution emissions in Singapore:
5 6	535	Evidence in support of the environmental Kuznets curve hypothesis and its implications
7 8	536	for regional sustainability. Journal of Cleaner Production, 243, 118637.
9 10 11	537	https://doi.org/10.1016/j.jclepro.2019.118637
12 13	538	Cole, M. A. (1999). Limits to growth, sustainable development and environmental Kuznets
14 15	539	curves: An examination of the environmental impact of economic development.
16 17 18	540	Sustainable Development, 7, 87-97. https://doi.org/10.1002/(SICI)1099-
19 20	541	1719(199905)7:2<87::AID-SD102>3.0.CO;2-5
21 22	542	Cole, M. A. (2004). Trade, the pollution haven hypothesis and the environmental Kuznets
23 24 25	543	curve: Examining the linkages. Ecological Economics, 48, 71–81.
23 26 27	544	https://doi.org/10.1016/j.ecolecon.2003.09.007
28 29	545	Cole, M. A., Rayner, A. J., & Bates, J. M. (1997). The environmental Kuznets curve: An
30 31	546	empirical analysis. Environment and Development Economics, 2, 401–416.
32 33 34	547	https://doi.org/10.1017/S1355770X97000211
35 36	548	Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A.,
37 38	549	Janssens-Maenhout, G. (2018). Gridded emissions of air pollutants for the period 1970-
39 40 41	550	2012 within EDGAR v4.3.2. Earth System Science Data, 10, 1987–2013.
41 42 43	551	https://doi.org/10.5194/essd-10-1987-2018
44 45	552	Dinda, S. (2004). Environmental Kuznets Curve hypothesis: A survey. Ecological
46 47	553	Economics, 49, 431-455. https://doi.org/10.1016/j.ecolecon.2004.02.011
48 49 50	554	Ding, Y., Zhang, M., Chen, S., Wang, W., & Nie, R. (2019). The environmental Kuznets
50 51 52	555	curve for PM _{2.5} pollution in Beijing-Tianjin-Hebei region of China: A spatial panel data
53 54	556	approach. Journal of Cleaner Production, 220, 984–994.
55 56	557	https://doi.org/10.1016/j.jclepro.2019.02.229
57 58 59 60	558	Dong, K., Sun, R., Li, H., & Liao, H. (2018). Does natural gas consumption mitigate CO ₂

Page 25 of 49

1

2								
3 4	559	emissions: Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific						
5 6	560	countries. Renewable and Sustainable Energy Reviews, 94, 419-429.						
7 8	561	https://doi.org/10.1016/j.rser.2018.06.026						
9 10	562 Dong, Q., Lin, Y., Huang, J., & Chen, Z. (2020). Has urbanization accelerate							
11 12 13	563	emissions? An empirical analysis with cross-country data. China Economic Review, 59,						
13 14 15	564	101381. https://doi.org/10.1016/j.chieco.2019.101381						
16 17	565	Ertugrul, H. M., Cetin, M., Seker, F., & Dogan, E. (2016). The impact of trade openness on						
18 19	566	global carbon dioxide emissions: Evidence from the top ten emitters among developing						
20 21	567	countries. Ecological Indicators, 67, 543–555.						
22 23 24	568	https://doi.org/10.1016/j.ecolind.2016.03.027						
24								
26 27	569	Fonkych, K., & Lempert, R. (2005). Assessment of environmental Kuznets curves and						
28 29	570	socioeconomic drivers in IPCC's SRES Scenarios. Journal of Environment and						
30 31	571	Development, 14, 27-47. https://doi.org/10.1177/1070496504273513						
32 33	572	Friedl, B., & Getzner, M. (2003). Determinants of CO ₂ emissions in a small open economy.						
34 35 36	573	Ecological Economics, 45, 133-148. https://doi.org/10.1016/S0921-8009(03)00008-9						
37 38	574	Gardiner, R., & Hajek, P. (2019). Interactions among energy consumption, CO ₂ , and						
39 40	575	economic development in European Union countries. Sustainable Development.						
41 42	576	https://doi.org/10.1002/sd.2023						
43 44 45	577	Ge, X., Zhou, Z., Zhou, Y., Ye, X., & Liu, S. (2018). A spatial panel data analysis of						
45 46 47	578	economic growth, urbanization, and NO _x emissions in China. International Journal of						
48 49	579	Environmental Research and Public Health, 15, 725.						
50 51	580	https://doi.org/10.3390/ijerph15040725						
52 53	581	Gill, A. R., Viswanathan, K. K., & Hassan, S. (2018). The Environmental Kuznets Curve						
54 55 56	582	(EKC) and the environmental problem of the day. Renewable and Sustainable Energy						
50 57	502							
58 59 60	583	Keviews, 81, 1636–1642. https://doi.org/10.1016/j.rser.201/.05.24/						

2		
2 3 4	584	Grossman, G. M., & Krueger, A. B. (1991). Environmental impacts of a North American
5 6	585	Free Trade Agreement (NBER Working Papers No. 3914). Cambridge, MA.
/ 8 9	586	https://doi.org/10.3386/w3914
9 10 11	587	Grossman, G. M., & Krueger, A. B. (1995). Economic growth and the environment.
12 13	588	Quarterly Journal of Economics, 110, 353-377. https://doi.org/10.2307/2118443
14 15 16	589	Halleck Vega, S., & Elhorst, J. P. (2015). The SLX model. Journal of Regional Science, 55,
10 17 18	590	339-363. https://doi.org/10.1111/jors.12188
19 20	591	Hao, Y., Liu, Y., Weng, J. H., & Gao, Y. (2016). Does the environmental Kuznets curve for
21 22	592	coal consumption in China exist? New evidence from spatial econometric analysis.
23 24 25	593	Energy, 114, 1214–1223. https://doi.org/10.1016/j.energy.2016.08.075
26 27	594	Hao, Y., Wu, Y., Wang, L., & Huang, J. (2018). Re-examine environmental Kuznets curve in
28 29	595	China: Spatial estimations using environmental quality index. Sustainable Cities and
30 31 32	596	Society, 42, 498–511. https://doi.org/10.1016/j.scs.2018.08.014
33 34	597	Hayasaka, H., Noguchi, I., Putra, E. I., Yulianti, N., & Vadrevu, K. (2014). Peat-fire-related
35 36	598	air pollution in Central Kalimantan, Indonesia. Environmental Pollution, 195, 257–266.
37 38 20	599	https://doi.org/10.1016/j.envpol.2014.06.031
39 40 41	600	He, J. (2006). Pollution haven hypothesis and environmental impacts of foreign direct
42 43	601	investment: The case of industrial emission of sulfur dioxide (SO ₂) in Chinese
44 45	602	provinces. Ecological Economics, 60, 228-245. https://doi.org/10.1016/j.eco
46 47 48	603	Hecht, J. S., Lacombe, G., Arias, M. E., Dang, T. D., & Piman, T. (2019). Hydropower dams
49 50	604	of the Mekong River basin: A review of their hydrological impacts. Journal of
51 52	605	Hydrology, 568, 285-300. https://doi.org/10.1016/j.jhydrol.2018.10.045
53 54 55	606	Heidari, H., Turan Katircioğlu, S., & Saeidpour, L. (2015). Economic growth, CO ₂
56 57	607	emissions, and energy consumption in the five ASEAN countries. International Journal
58 59 60	608	of Electrical Power and Energy Systems, 64, 785–791.
00		

1 2		
3 4	609	https://doi.org/10.1016/j.ijepes.2014.07.081
5 6	610	Herrerias, M. J., Aller, C., & Ordóñez, J. (2017). Residential energy consumption: A
7 8 9 10 11 12 13	611	convergence analysis across Chinese regions. Energy Economics, 62, 371-381.
	612	https://doi.org/10.1016/j.eneco.2016.06.006
	613	Holtz-Eakin, D., & Selden, T. M. (1995). Stoking the fires? CO ₂ emissions and economic
14 15	614	growth. Journal of Public Economics, 57, 85-101. https://doi.org/10.18848/1835-
16 17 18	615	7156/cgp/v02i03/37070
19 20	616	Hsiao, C. (2007). Panel data analysis-advantages and challenges. TEST, 16, 1-22.
21 22	617	https://doi.org/10.1007/s11749-007-0046-x
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	618	Huang, J., Du, D., & Tao, Q. (2017). An analysis of technological factors and energy
	619	intensity in China. Energy Policy, 109, 1–9. https://doi.org/10.1016/j.enpol.2017.06.048
	620	International Energy Agency (2017). Southeast Asia Energy Outlook 2017: World Energy
	621	Outlook Special Report. Retrieved September 17, 2019, from: https://www.iea.org/
	622	$publications/free publications/publication/WEO2017 Special Report_SoutheastAsia Energence and the second strain of the second strain $
	623	yOutlook.pdf
	624	IQAir (2019). 2019 World Air Quality Report: Region & City PM _{2.5} Ranking. Retrieved May
39 40 41	625	11, 2020, from: https://www.iqair.com/world-most-polluted-cities/world-air-quality-
42 43	626	report-2019-en.pdf
44 45	627	Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F.,
46 47 48	628	Oreggioni, G. D. (2019). EDGAR v4.3.2 Global Atlas of the three major greenhouse gas
48 49 50	629	emissions for the period 1970–2012. Earth System Science Data, 11, 959–1002.
51 52	630	https://doi.org/10.5194/essd-11-959-2019
53 54	631	Jayanthakumaran, K., Verma, R., & Liu, Y. (2012). CO2 emissions, energy consumption,
56 57	632	trade and income: A comparative analysis of China and India. Energy Policy, 42, 450-
58 59	633	460. https://doi.org/10.1016/j.enpol.2011.12.010
00		

2		
3 4	634	Kaika, D., & Zervas, E. (2013). The Environmental Kuznets Curve (EKC) theory-Part A:
5 6 7	635	Concept, causes and the CO ₂ emissions case. Energy Policy, 62, 1392–1402.
7 8 9	636	https://doi.org/10.1016/j.enpol.2013.07.131
10 11	637	Kang, Y. Q., Zhao, T., & Yang, Y. Y. (2016). Environmental Kuznets curve for CO ₂
12 13	638	emissions in China: A spatial panel data approach. Ecological Indicators, 63, 231–239.
14 15 16	639	https://doi.org/10.1016/j.ecolind.2015.12.011
10 17 18	640	Kearsley, A., & Riddel, M. (2010). A further inquiry into the pollution haven hypothesis and
19 20	641	the environmental Kuznets curve. Ecological Economics, 69, 905–919.
21 22	642	https://doi.org/10.1016/j.ecolecon.2009.11.014
23 24 25	643	Kelejian, H. H., & Prucha, I. R. (2010). Specification and estimation of spatial autoregressive
26 27	644	models with autoregressive and heteroskedastic disturbances. Journal of Econometrics,
28 29	645	157, 53-67. https://doi.org/10.1016/j.jeconom.2009.10.025
30 31 32	646	Keller, W. (2004). International Technology Diffusion. Journal of Economic Literature, 42,
33 34	647	752-782. https://doi.org/10.2753/eee0012-8775510202
35 36	648	Koplitz, S. N., Jacob, D. J., Sulprizio, M. P., Myllyvirta, L., & Reid, C. (2017). Burden of
37 38 30	649	disease from rising coal-fired power plant emissions in Southeast Asia. Environmental
39 40 41	650	Science and Technology, 51, 1467–1476. https://doi.org/10.1021/acs.est.6b03731
42 43	651	Lau, L. S., Choong, C. K., & Eng, Y. K. (2014). Investigation of the environmental Kuznets
44 45	652	curve for carbon emissions in Malaysia: Do foreign direct investment and trade matter?
46 47 48	653	Energy Policy, 68, 490-497. https://doi.org/10.1016/j.enpol.2014.01.002
49 50	654	Le, D. N. (2019). Environmental degradation and economic growth in ASEAN-10: The
51 52	655	perspective of EKC hypothesis. Malaysian Journal of Economic Studies, 56, 43-62.
53 54 55	656	https://doi.org/10.22452/mjes.vol56no1.3
56 57	657	Lean, H. H., & Smyth, R. (2010). CO ₂ emissions, electricity consumption and output in
58 59 60	658	ASEAN. Applied Energy, 87, 1858–1864.

2 3	659	https://doi.org/10.1016/j.apenergy.2010.02.003
4 5 6	660	Lee, HH., Iraqui, O., & Wang, C. (2019). The impact of future fuel consumption on
7 8	661	regional air quality in Southeast Asia. Scientific Reports, 9, 2648.
9 10 11	662	https://doi.org/10.1038/s41598-019-39131-3
12 13	663	LeSage, J. P. (2014). What regional scientists need to know about spatial econometrics.
14 15 16	664	Review of Regional Studies, 44, 13-32. http://dx.doi.org/10.2139/ssrn.2420725
17 18	665	LeSage, J. P., & Pace, R. K. (2009). Introduction to Spatial Econometrics. Boca Raton, FL:
19 20	666	Taylor & Francis.
21 22	667	Levinson, A. (2009). Pollution and international trade in services (NBER Working Paper No.
23 24 25	668	14936). Cambridge, MA. https://doi.org/10.3386/w14936
26 27	669	Li, Q., Song, J., Wang, E., Hu, H., Zhang, J., & Wang, Y. (2014). Economic growth and
28 29	670	pollutant emissions in China: A spatial econometric analysis. Stochastic Environmental
30 31 32	671	Research and Risk Assessment, 28, 429–442. https://doi.org/10.1007/s00477-013-0762-
33 34	672	6
35 36	673	Liu, X., Zhang, S., & Bae, J. (2017). The impact of renewable energy and agriculture on
37 38	674	carbon dioxide emissions: Investigating the environmental Kuznets curve in four
39 40 41	675	selected ASEAN countries. Journal of Cleaner Production, 164, 1239–1247.
42 43	676	https://doi.org/10.1016/j.jclepro.2017.07.086
44 45	677	López-Menéndez, A. J., Pérez, R., & Moreno, B. (2014). Environmental costs and renewable
46 47 48	678	energy: Re-visiting the Environmental Kuznets Curve. Journal of Environmental
49 50	679	Management, 145, 368-373. https://doi.org/10.1016/j.jenvman.2014.07.017
51 52	680	Maddison, D. (2006). Environmental Kuznets curves: A spatial econometric approach.
53 54	681	Journal of Environmental Economics and Management, 51, 218-230.
55 56 57	682	https://doi.org/10.1016/j.jeem.2005.07.002
58 59	683	Maddison, D. (2007). Modelling sulphur emissions in Europe: a spatial econometric
60		

Sustainable Development

Page 30 of 49

3 4	684	approach. Oxford Economic Papers, 59, 726–743. https://doi.org/10.1093/oep/gpm005
5 6 7	685	Meng, L., & Huang, B. (2018). Shaping the relationship between economic development and
7 8 9	686	carbon dioxide emissions at the local level: Evidence from spatial econometric models.
10 11	687	Environmental and Resource Economics, 71, 127-156. https://doi.org/10.1007/s10640-
12 13	688	017-0139-2
14 15 16	689	Mukherjee, I., & Sovacool, B. K. (2014). Palm oil-based biofuels and sustainability in
17 18	690	southeast Asia: A review of Indonesia, Malaysia, and Thailand. Renewable and
19 20	691	Sustainable Energy Reviews, 37, 1–12. https://doi.org/10.1016/j.rser.2014.05.001
21 22 23	692	Nasir, M. A., Duc Huynh, T. L., & Xuan Tram, H. T. (2019). Role of financial development,
24 25	693	economic growth & foreign direct investment in driving climate change: A case of
26 27	694	emerging ASEAN. Journal of Environmental Management, 242, 131–141.
28 29 30	695	https://doi.org/10.1016/j.jenvman.2019.03.112
31 32	696	Nechita-Banda, N., Krol, M., Van Der Werf, G. R., Kaiser, J. W., Pandey, S., Huijnen, V.,
33 34	697	Röckmann, T. (2018). Monitoring emissions from the 2015 Indonesian fires using CO
35 36 37	698	satellite data. Philosophical Transactions of the Royal Society B: Biological Sciences,
38 39	699	373, 20170307. https://doi.org/10.1098/rstb.2017.0307
40 41	700	Pan, X., Uddin, M. K., Han, C., & Pan, X. (2019). Dynamics of financial development, trade
42 43	701	openness, technological innovation and energy intensity: Evidence from Bangladesh.
44 45 46	702	Energy, 171, 456–464. https://doi.org/10.1016/j.energy.2018.12.200
47 48	703	Panayotou, T. (1993). Empirical tests and policy analysis of environmental degradation at
49 50	704	different stages of economic development, Technology and Employment Programme.
51 52 53	705	Geneva.
54 55	706	R Core Team, 2018. R: A language and environment for statistical computing.
56 57	707	Rupasingha, A., Goetz, S. J., Debertin, D. L., & Pagoulatos, A. (2004). The environmental
58 59 60	708	Kuznets curve for US counties: A spatial econometric analysis with extensions. Papers

1		
2 3 4	709	in Regional Science, 83, 407–424. https://doi.org/10.1007/s10110-004-0199-x
5 6	710	Saboori, B., & Sulaiman, J. (2013). CO ₂ emissions, energy consumption and economic
7 8	711	growth in association of Southeast Asian Nations (ASEAN) countries: A cointegration
9 10 11	712	approach. Energy, 55, 813-822. https://doi.org/10.1016/j.energy.2013.04.038
12 13	713	Saboori, B., Sulaiman, J., & Mohd, S. (2012). Economic growth and CO ₂ emissions in
14 15	714	Malaysia: A cointegration analysis of the environmental Kuznets curve. Energy Policy,
16 17	715	51, 184-191. https://doi.org/10.1016/j.enpol.2012.08.065
18 19 20	716	Selden, T. M., & Song, D. (1994). Environmental quality and development: Is there a
21 22	717	Kuznets curve for air pollution emissions? Journal of Environmental Economics and
23 24	718	Management, 27, 147-162. https://doi.org/10.1006/jeem.1994.1031
25 26 27	719	Shafik, N. (1994). Economic development and environmental quality: An econometric
27 28 29	720	analysis. Oxford Economic Papers, 46, 757–773.
30 31	721	https://doi.org/10.1093/oep/46.Supplement_1.757
32 33	722	Shi, Y., Zhao, A., Matsunaga, T., Yamaguchi, Y., Zang, S., Li, Z., Gu, X. (2018).
34 35 36	723	Underlying causes of PM _{2.5} -induced premature mortality and potential health benefits of
37 38	724	air pollution control in South and Southeast Asia from 1999 to 2014. Environment
39 40	725	International, 121, 814-823. https://doi.org/10.1016/j.envint.2018.10.019
41 42 43	726	Stern, D. I. (2004). The rise and fall of the environmental Kuznets curve. World
44 45	727	Development, 32, 1419-1439. https://doi.org/10.1016/j.worlddev.2004.03.004
46 47	728	Streets, D. G., Yarber, K. F., Woo, JH., & Carmichael, G. R. (2003). Biomass burning in
48 49 50	729	Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical
50 51 52	730	Cycles, 17, 1099. https://doi.org/10.1029/2003gb002040
53 54	731	Sun, H., Clottey, S. A., Geng, Y., Fang, K., & Amissah, J. C. K., (2019). Trade openness and
55 56	732	carbon emissions: Evidence from belt and road countries. Sustainability, 11, 2682.
57 58 59 60	733	https://doi.org/10.3390/su11092682

2								
3 4	734	Tang, C. F., & Tan, B. W. (2015). The impact of energy consumption, income and foreign						
5 6 7	735	direct investment on carbon dioxide emissions in Vietnam. Energy, 79, 447-454.						
7 8 9	736	https://doi.org/10.1016/j.energy.2014.11.033						
10 11	737	Tevie, J., Grimsrud, K. M., & Berrens, R. P. (2011). Testing the environmental Kuznets						
12 13	738	curve hypothesis for biodiversity risk in the US: A spatial econometric approach.						
14 15 16	739	Sustainability, 3, 2182–2199. https://doi.org/10.3390/su3112182						
17 18	740	Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region.						
19 20	741	Economic Geography, 46, 234–240. https://doi.org/10.2307/143141						
21 22 22	742	UN Environment (2017). The South East Asia Air Quality Regional Report: Actions taken by						
25 24 25	743	governments to improve air quality. Retrieved September 17, 2019, from:						
26 27	744	https://wedocs.unep.org/bitstream/handle/20.500.11822/20247/SouthEastAsia_report.pd						
28 29 20	745	f?sequence=1&%3BisAllowed=						
30 31 32	746	United States Environmental Protection Agency (2016). Criteria Air Pollutants. Retrieved						
33 34	747	September 17, 2019, from: https://www.epa.gov/criteria-air-pollutants						
35 36	748	Vadrevu, K. P., Ohara, T., Justice, C. (2014). Air pollution in Asia. Environmental Pollution,						
37 38 39	749	195, 233-235. https://doi.org/10.1016/j.envpol.2014.09.006						
40 41	750	Vincent, J. R. (1997). Testing for environmental Kuznets curves within a developing country.						
42 43	751	Environment and Development Economics, 2, 417–431.						
44 45 46	752	https://doi.org/10.1017/S1355770X97000223						
40 47 48	753	Wagner, U. J., & Timmins, C. D. (2009). Agglomeration effects in foreign direct investment						
49 50	754	and the pollution haven hypothesis. Environmental and Resource Economics, 43, 231-						
51 52	755	256. https://doi.org/10.1007/s10640-008-9236-6						
53 54 55	756	Wang, Q., & Yang, X. (2019). Urbanization impact on residential energy consumption in						
56 57	757	China: the roles of income, urbanization level, and urban density. Environmental						
58 59 60	758	Science and Pollution Research, 26, 3542–3555. https://doi.org/10.1007/s11356-018-						

Page 33 of 49

1 2							
2 3 4	759	3863-4					
5 6	760	Wang, Y., Kang, L., Wu, X., & Xiao, Y. (2013). Estimating the environmental Kuznets curve					
7 8 9 10 11 12 13	761	for ecological footprint at the global level: A spatial econometric approach. Ecological					
	762	Indicators, 34, 15-21. https://doi.org/10.1016/j.ecolind.2013.03.021					
	763	Ward, J. D., Sutton, P. C., Werner, A. D., Costanza, R., Mohr, S. H., & Simmons, C. T.					
14 15	764	(2016). Is decoupling GDP growth from environmental impact possible? PLoS ONE, 11,					
16 17 18	765	e0164733. https://doi.org/10.1371/journal.pone.0164733					
19 20	766	Wooldridge, J. M. (2013). Introductory Econometrics: A Modern Approach (5th ed.) Mason,					
21 22	767	OH: South-Western, Cengage Learning.					
23 24 25	768	World Bank (2019). World Bank Country and Lending Groups. Retrieved September 17,					
26 27	769	2019, from: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-					
28 29	770	bank-country-and-lending-groups					
30 31 32	771	World Coal Association and ASEAN Centre for Energy (2017). ASEAN's Energy Equation:					
32 33 34 35 36	772	The Role of Low Emission Coal in Driving A Sustainable Energy Future. Retrieved					
	773	September 17, 2019, from: https://www.worldcoal.org/file_validate.php?file=ASEAN%					
37 38	774	27s%20energy% 20equation_final_0.pdf					
39 40 41	775	World Health Organisation (2018). Air Pollution, Climate and Health: The Calculation is					
42 43	776	Simple. Retrieved September 17, 2019, from: https://www.who.int/sustainable-					
44 45	777	development/AirPollution_Climate_Health_Factsheet.pdf					
46 47 48	778	Xie, Y., Dai, H., & Dong, H. (2018). Impacts of SO ₂ taxations and renewable energy					
49 50	779	development on CO_2 , NO_x and SO_2 emissions in Jing-Jin-Ji region. Journal of Cleaner					
51 52	780	Production, 171, 1386–1395. https://doi.org/10.1016/j.jclepro.2017.10.057					
53 54	781	Xu, W., Sun, J., Liu, Y., Xiao, Y., Tian, Y., Zhao, B., & Zhang, X. (2019). Spatiotemporal					
55 56 57	782	variation and socioeconomic drivers of air pollution in China during 2005–2016. Journal					
58 59 60	783	of Environmental Management, 245, 66–75.					

1		
2 3 4	784	https://doi.org/10.1016/j.jenvman.2019.05.041
5 6	785	Yang, M., Ma, T., & Sun, C. (2018). Evaluating the impact of urban traffic investment on
/ 8 9	786	SO ₂ emissions in China cities. Energy Policy, 113, 20–27.
10 11	787	https://doi.org/10.1016/j.enpol.2017.10.039
12 13	788	Yang, N., Zhang, Z., Xue, B., Ma, J., Chen, X., & Lu, C. (2018). Economic growth and
14 15 16	789	pollution emission in China: Structural path analysis. Sustainability, 10, 2569.
10 17 18	790	https://doi.org/10.3390/su10072569
19 20	791	Zhang, J., Zhang, K., & Zhao, F. (2020). Spatial effects of economic growth, energy
21 22 23	792	consumption and environmental pollution in the provinces of China—An empirical
23 24 25	793	study of a spatial econometrics model. Sustainable Development.
26 27	794	https://doi.org/10.1002/sd.2042
28 29	795	Zhou, Z., Ye, X., & Ge, X. (2017). The impacts of technical progress on sulfur dioxide
30 31 32	796	Kuznets curve in China: A spatial panel data approach. Sustainability, 9, 674.
33 34	797	https://doi.org/10.3390/su9040674
35 36	798	Zhu, H., Duan, L., Guo, Y., & Yu, K. (2016). The effects of FDI, economic growth and
37 38 39	799	energy consumption on carbon emissions in ASEAN-5: Evidence from panel quantile
40 41	800	regression. Economic Modelling, 58, 237–248.
42 43	801	https://doi.org/10.1016/j.econmod.2016.05.003
44 45 46	802	Zhu, W., Wang, M., & Zhang, B. (2019). The effects of urbanization on PM _{2.5} concentrations
40 47 48	803	in China's Yangtze River Economic Belt: New evidence from spatial econometric
49 50	804	analysis. Journal of Cleaner Production, 239, 118065.
51 52 53 54	805	https://doi.org/10.1016/j.jclepro.2019.118065
55 56		
57 58		
59 60		

Table 1. Summary of EKC studies for Southeast Asian countries.

			Variables			
Author(s)	Countries	Period	Dependent	Explanatory	EKC	Spatial
					supported?	relationships
						considered?
Al-Mulali et	Vietnam	1981–2011	CO ₂	GDP, exports, imports, non-renewable	No	No
al. (2015)				energy consumption, renewable energy		
				consumption, labour force, capital		
Apergis and	14 Asian countries	1990–2011	CO_2	GDP, population density, industry share,	Yes	No
Ozturk	including Indonesia,			land area, political stability, quality of		
(2015)	Malaysia and			regulation, government effectiveness,		
	Singapore			corruption		
Azlina et al.	Malaysia	1975–2011	CO_2	GDP, energy consumption, industrial	No	No
(2014)				structure, renewable energy consumption		
Baek (2016)	ASFAN-5	1981-2010	CO	GDP energy consumption FDI	No	No

http://mc.manuscriptcentral.com/sd

Chandran	ASEAN-5	1971–2008	CO ₂	GDP, energy consumption, FDI	No	No
and Tang						
(2013)						
Chen and	Singapore	1950–2017	Cr	GDP, FDI, trade openness, environmental	Yes	No
Taylor				regulations		
(2020)						
Dong et al.	14 Asia-Pacific	1970–2016	CO ₂	GDP, natural gas consumption	Yes	No
(2018)	countries including					
	ASEAN-5 and					
	Vietnam					
Heidari et al.	ASEAN-5	1980–2008	CO ₂	GDP, energy consumption	Yes	No
(2015)						
Lau et al.	Malaysia	1970–2008	CO ₂	GDP, FDI, trade openness	Yes	No
(2014)						
Le (2019)	ASEAN	1993–2014	CO ₂	GDP, FDI, trade openness, level of	No	No
				urbanisation		
			http://mc.man	uscriptcentral.com/sd		

Page 37 of 49

Sustainable Development

Lean and	ASEAN-5	1980–2006	CO ₂	GDP, electricity consumption	Yes	No	
Smyth							
(2010)							
Liu et al.	Indonesia, Malaysia,	1970–2013	CO ₂	GDP, renewable energy consumption, non-	No	No	
(2017)	Philippines, Thailand			renewable energy consumption, value-			
				added of agricultural sector			
Nasir et al.	ASEAN-5	1982–2014	CO ₂	GDP, FDI, bank credit to bank deposit,	No	No	
(2019)				international debt, number of listed			
				companies			
Saboori et al.	Malaysia	1980–2009	CO_2	GDP	Yes	No	
(2012)							
Saboori and	ASEAN-5	1971–2009	CO_2	GDP, energy consumption	Yes (Singapore	No	
Sulaiman					and Thailand);		
(2013)					No (Indonesia,		
					Malaysia and		
					Philippines)		
http://mc.manuscriptcentral.com/sd							

Tang and	Vietnam	1976–2009	CO ₂	GDP, energy consumption, FDI	Yes	No
Tan (2015)						
Vincent	Malaysia	Late 1970s to	TSP, BOD,	GDP, population density	No	No
(1997)		early 1990s	COD, pH,			
			NH ₃ -N, TSS			
Zhu et al.	ASEAN-5	1981–2011	CO ₂	GDP, energy consumption, FDI, trade	No	No
(2016)				openness, industrial structure, financial		
				development, total population		

Note: CO_2 = carbon dioxide emissions; Cr = chromium emissions; GDP = gross domestic product; FDI = foreign direct investment; ASEAN-5 = five original member countries of the Association of Southeast Asian Nations comprising Indonesia, Malaysia, Philippines, Singapore and Thailand; TSP = total suspended particles in the air; BOD, COD, pH, NH₃-N and TSS are water quality parameters where BOD = biochemical oxygen demand, COD = chemical oxygen demand, NH_3 -N = ammoniacal nitrogen and TSS = total suspended solids.

	Description	Min	Max	Mean	SD
Depend	lent variable, e				
NO _x	Per capita emissions of nitrogen oxides (kg)	2.69	58.28	16.62	15.27
SO_2	Per capita emissions of sulfur dioxide (kg)	0.84	120.67	15.32	25.62
PM _{2.5}	Per capita emissions of fine particulate matter (kg)	2.20	14.89	6.99	3.07
Explan	atory variables				
у	Per capita GDP based on PPP (constant 2011 international \$)	1031.66	86,433.81	20,917.13	27,837.58
UB	Share of population living in urban areas (%)	16.49	100.00	47.77	25.30
RE	Share of renewable energy in total final energy consumption (%)	0.00	86.93	34.88	29.43
SV	Share of services sector (ISIC divisions 50-99) over GDP (%)	25.25	69.21	45.76	9.40
EI	Primary energy intensity per unit GDP (MJ/\$2011 PPP GDP)	2.51	11.92	5.16	1.51
FDI	Foreign direct investment inward stock as a percentage of GDP (%)	1.17	284.99	44.12	52.36

Note: Per capita emissions were calculated using data for total emissions from the EDGAR v4.3.2 database (Crippa et al., 2018) and data for total population from the World Bank's World Development Indicators. ISIC divisions 50–99 include services in wholesale and retail trade (including hotels and restaurants), transport, and government, financial, professional and personal services such as education, healthcare and real estate services.

	Two-way FE	SDEM	SLX	SEM
lnGDP	4.395***	4.139***	4.025***	4.294***
	(10.421)	(10.611)	(8.252)	(12.328)
(lnGDP) ²	-0.236***	-0.232***	-0.229***	-0.232***
	(-8.887)	(-9.628)	(-7.647)	(-10.574)
Urbanisation	0.028***	0.034***	0.035***	0.030***
	(7.046)	(6.694)	(5.416)	(8.577)
RenewableEnergy	-0.011***	-0.011***	-0.013***	-0.011***
	(-4.010)	(-3.764)	(-3.368)	(-4.898)
ServicesSector	-0.011***	-0.009***	-0.010***	-0.011***
	(-4.245)	(-3.484)	(-2.944)	(-4.799)
InEnergyIntensity	0.158***	0.124*	0.104	0.130**
	(2.698)	(1.716)	(1.053)	(2.246)
FDI	0.001	-0.000	-0.000	0.001
	(1.278)	(-0.693)	(-0.305)	(1.311)
WlnGDP		-1.130	-2.618	
		(-0.651)	(-1.198)	
W(lnGDP) ²		0.041	0.087	
		(0.422)	(0.715)	
WUrbanisation		0.045**	0.052**	
		(2.306)	(2.224)	
WRenewableEnergy		-0.001	-0.022	
		(-0.040)	(-1.076)	
WServicesSector		0.007	-0.002	
		(0.548)	(-0.103)	
WlnEnergyIntensity		-0.154	-0.372	
		(-0.578)	(-1.109)	
WFDI		-0.000	0.000	
		(-0.222)	(0.168)	
Wu		-0.958***		-0.965***
		(-6.798)		(-6.864)
Log-likelihood	198.357	3.569	203.570	-0.448
LR SLX		-400.002		
LR SEM		8.033		

Table 3. Non-spatial and spatial estimation results for per capita NO_x emissions.

Turning Point (\$)	10,957	7589	6525	10,321
95% CI	[4819, 24,914]	[4444, 12,960]	[3280, 12,981]	[6468, 16,469]

Note: t-statistics for the estimated coefficients are in parentheses; ***, ** and * indicate significance levels of 1%, 5% and 10%, respectively. The dependent variable, per capita NO_x emissions, enters in its natural logarithm.

to per perient

	Two-way FE	SDEM	SLX	SEM
InGDP	8.089***	7.563***	7.195***	7.471***
	(9.856)	(11.550)	(8.668)	(11.882)
(lnGDP) ²	-0.487***	-0.465***	-0.457***	-0.438***
	(-9.412)	(-11.513)	(-8.965)	(-11.057)
Urbanisation	0.053***	0.060***	0.065***	0.054***
	(6.856)	(7.070)	(5.934)	(8.245)
RenewableEnergy	-0.023***	-0.025***	-0.031***	-0.021***
	(-4.496)	(-4.937)	(-4.616)	(-5.025)
ServicesSector	-0.015***	-0.006	-0.008	-0.012***
	(-2.968)	(-1.531)	(-1.349)	(-3.044)
InEnergyIntensity	-0.138	0.300**	0.378**	0.073
	(-1.211)	(2.488)	(2.241)	(0.667)
FDI	0.000	-0.003***	-0.003**	0.000
	(0.448)	(-2.712)	(-2.041)	(0.226)
WlnGDP		-5.359*	-9.268**	
		(-1.842)	(-2.492)	
W(lnGDP) ²		0.317*	0.466**	
		(1.941)	(2.237)	
WUrbanisation		0.108***	0.143***	
		(3.327)	(3.615)	
WRenewableEnergy		-0.004	-0.057	
		(-0.133)	(-1.630)	
WServicesSector		0.020	0.005	
		(1.003)	(0.176)	
WlnEnergyIntensity		1.317***	1.520***	
		(2.952)	(2.660)	
WFDI		0.001	0.002	
		(0.291)	(0.656)	
Wu		-1.007***		-1.219***
		(-7.272)		(-9.782)
Log-likelihood	78.527	-90.103	107.870	-111.743
LR SLX		-395.947		
LR SEM		43.279***		

Table 4. Non-spatial and spatial estimation results for per capita SO₂ emissions.

Turning Point (\$)	4054	3402	2616	5026
95% CI	[1863, 8821]	[2271, 5097]	[1521, 4499]	[3432, 7360]

Note: t-statistics for the estimated coefficients are in parentheses; ***, ** and * indicate significance levels of 1%, 5% and 10%, respectively. The dependent variable, per capita SO_2 emissions, enters in its natural logarithm.

for per peries

	Two-way FE	SDEM	SLX	SEM
lnGDP	3.169***	2.697***	2.774***	3.490***
	(9.506)	(9.955)	(8.449)	(12.141)
(lnGDP) ²	-0.162***	-0.144***	-0.150***	-0.178***
	(-7.689)	(-8.624)	(-7.436)	(-9.791)
Urbanisation	0.014***	0.019***	0.019***	0.017***
	(4.582)	(5.368)	(4.502)	(5.771)
RenewableEnergy	0.006***	0.004*	0.004	0.006***
	(2.722)	(1.942)	(1.465)	(3.340)
ServicesSector	-0.004*	-0.001	-0.001	-0.003*
	(-1.838)	(-0.562)	(-0.360)	(-1.791)
InEnergyIntensity	0.036	0.181***	0.172**	0.064
	(0.787)	(3.502)	(2.574)	(1.387)
FDI	0.000	-0.001*	-0.001	0.000
	(0.822)	(-1.914)	(-1.274)	(0.367)
WlnGDP		3.228***	3.186**	
		(2.664)	(2.166)	
W(lnGDP) ²		-0.220***	-0.216***	
		(-3.234)	(-2.626)	
WUrbanisation		0.056***	0.055***	
		(4.217)	(3.542)	
WRenewableEnergy		-0.013	-0.012	
		(-1.115)	(-0.880)	
WServicesSector		-0.008	-0.005	
		(-0.987)	(-0.497)	
WlnEnergyIntensity		0.469**	0.439*	
		(2.534)	(1.944)	
WFDI		0.003**	0.003*	
		(2.376)	(1.802)	
Wu		-0.729***		-0.804***
		(-4.911)		(-5.475)
Log-likelihood	240.676	70.997	274.820	36.225
LR SLX		-407.647		
LR SEM		69.543***		

Table 5. Non-spatial and spatial estimation results for per capita $PM_{2.5}$ emissions.

Turning Point (\$)	18,171	11,649	10,381	18,545
95% CI	[3605, 91,583]	[6063, 22,382]	[4842, 22,259]	[10,335, 33,276]

Note: t-statistics for the estimated coefficients are in parentheses; ***, ** and * indicate significance levels of 1%, 5% and 10%, respectively. The dependent variable, per capita $PM_{2.5}$ emissions, enters in its natural logarithm.

to peoper peries

FIGURE LEGEND

Figure 1. Geographical location and 2012 income classification of the nine Southeast Asian countries included in the study. No country had per capita GDP ranging between \$30,000 and \$70,000 (expressed in constant 2011 international dollars using purchasing power parity).

Figure 2. Scatterplots of per capita NO_x , SO_2 and $PM_{2.5}$ emissions (kg) against per capita GDP (measured at constant 2011 international dollars using purchasing power parity) from 1993–2012 for the nine Southeast Asian countries.

Figure 3. Per capita GDP of the nine Southeast Asian countries in our sample from 1993–2012 (measured at constant 2011 international dollars using purchasing power parity). Estimated turning points for NO_x (standard two-way FE model), SO₂ (SLX model) and PM_{2.5} emissions (SLX model) are indicated in dotted lines.

Figure 1. Geographical location and 2012 income classification of the nine Southeast Asian countries included in the study. No country had per capita GDP ranging between \$30,000 and \$70,000 (expressed in constant 2011 international dollars using purchasing power parity).

Figure 2. Scatterplots of per capita NO_x , SO_2 and $PM_{2.5}$ emissions (kg) against per capita GDP (measured at constant 2011 international dollars using purchasing power parity) from 1993–2012 for the nine Southeast Asian countries studied.

Figure 3. Per capita GDP of the nine Southeast Asian countries in our sample from 1993–2012 (measured at constant 2011 international dollars using purchasing power parity). Estimated turning points for NO_x (standard two-way FE model), SO_2 (SLX model) and $PM_{2.5}$ emissions (SLX model) are indicated in dotted lines.